Boosting Creativity

Learning to Generate Novel Scientific Directions with Contextualized Literature-based Discovery
Qingyun Wang, Doug Downey, Heng Ji, Tom Hope

Literature-Based Discovery (LBD) aims to discover new scientific knowledge by mining papers and generating hypotheses. Standard LBD is limited to predicting pairwise relations between discrete concepts (e.g., drug-disease links), and ignores critical contexts like experimental settings (e.g., a specific patient population where a drug is evaluated) and background motivations (e.g., to find drugs without specific side effects). We address these limitations with a novel formulation of contextualized-LBD (C-LBD): generating scientific hypotheses in natural language, while grounding them in a context that controls the hypothesis search space. We present a modeling framework using retrieval of ``inspirations’’ from past scientific papers. Our evaluations reveal that GPT-4 tends to generate ideas with overall low technical depth and novelty, while our inspiration prompting approaches partially mitigate this issue. Our work represents a first step toward building language models that generate new ideas derived from scientific literature.

Paper

Bursting Scientific Filter Bubbles: Boosting Innovation via Novel Author Discovery
Jason Portenoy, Marissa Radensky, Jevin West, Eric Horvitz, Daniel Weld, Tom Hope
CHI 2022 Conference on Human Factors in Computing Systems

Isolated silos of scientific research and the growing challenge of information overload limit awareness across the literature and hinder innovation. Algorithmic curation and recommendation, which often prioritize relevance, can further reinforce these informational “filter bubbles.” In response, we describe Bridger, a system for facilitating discovery of scholars and their work. We construct a faceted representation of authors with information gleaned from their papers and inferred author personas, and use it to develop an approach that locates commonalities and contrasts between scientists to balance relevance and novelty. In studies with computer science researchers, this approach helps users discover authors considered useful for generating novel research directions. We also demonstrate an approach for displaying information about authors, boosting the ability to understand the work of new, unfamiliar scholars. Our analysis reveals that Bridger connects authors who have different citation profiles and publish in different venues, raising the prospect of bridging diverse scientific communities.

Paper

Accelerating Innovation Through Analogy Mining
Tom Hope, Joel Chan, Aniket Kittur, Dafna Shahaf
KDD 2017 (Best Research Paper Award)

The availability of large idea repositories (e.g., the U.S. patent database) could significantly accelerate innovation and discovery by providing people with inspiration from solutions to analogous problems. However, finding useful analogies in these large, messy, real-world repositories remains a persistent challenge for either human or automated methods. Previous approaches include costly hand-created databases that have high relational structure (e.g., predicate calculus representations) but are very sparse. Simpler machine-learning/information-retrieval similarity metrics can scale to large, natural-language datasets, but struggle to account for structural similarity, which is central to analogy. In this paper we explore the viability and value of learning simpler structural representations, specifically, “problem schemas”, which specify the purpose of a product and the mechanisms by which it achieves that purpose. Our approach combines crowdsourcing and recurrent neural networks to extract purpose and mechanism vector representations from product descriptions. We demonstrate that these learned vectors allow us to find analogies with higher precision and recall than traditional information-retrieval methods. In an ideation experiment, analogies retrieved by our models significantly increased people’s likelihood of generating creative ideas compared to analogies retrieved by traditional methods. Our results suggest a promising approach to enabling computational analogy at scale is to learn and leverage weaker structural representations.

Paper

Scaling Creative Inspiration with Fine-Grained Functional Aspects of Ideas
Tom Hope, Ronen Tamari, Hyeonsu Kang, Daniel Hershcovich, Joel Chan, Aniket Kittur, Dafna Shahaf
CHI 2022 Conference on Human Factors in Computing Systems

Large repositories of products, patents and scientific papers offer an opportunity for building systems that scour millions of ideas and help users discover inspirations. However, idea descriptions are typically in the form of unstructured text, lacking key structure that is required for supporting creative innovation interactions. Prior work has explored idea representations that were either limited in expressivity, required significant manual effort from users, or dependent on curated knowledge bases with poor coverage. We explore a novel representation that automatically breaks up products into fine-grained functional aspects capturing the purposes and mechanisms of ideas, and use it to support important creative innovation interactions: functional search for ideas, and exploration of the design space around a focal problem by viewing related problem perspectives pooled from across many products. In user studies, our approach boosts the quality of creative search and inspirations, substantially outperforming strong baselines by 50-60%.

Paper

ACCoRD: A Multi-Document Approach to Generating Diverse Descriptions of Scientific Concepts
Sonia K. Murthy, Kyle Lo, Daniel King, Chandra Bhagavatula, Bailey Kuehl, Sophie Johnson, Jonathan Borchardt, Daniel S. Weld, Tom Hope, Doug Downey
EMNLP 2022

Systems that can automatically define unfamiliar terms hold the promise of improving the accessibility of scientific texts, especially for readers who may lack prerequisite background knowledge. However, current systems assume a single “best” description per concept, which fails to account for the many potentially useful ways a concept can be described. We present ACCoRD, an end-to-end system tackling the novel task of generating sets of descriptions of scientific concepts. Our system takes advantage of the myriad ways a concept is mentioned across the scientific literature to produce distinct, diverse descriptions of target scientific concepts in terms of different reference concepts. To support research on the task, we release an expert-annotated resource, the ACCoRD corpus, which includes 1,275 labeled contexts and 1,787 hand-authored concept descriptions. We conduct a user study demonstrating that (1) users prefer descriptions produced by our end-to-end system, and (2) users prefer multiple descriptions to a single “best” description.

Paper Github