Scientific Search
Scideator: Human-LLM Scientific Idea Generation Grounded in Research-Paper Facet Recombination
Marissa Radensky, Simra Shahid, Raymond Fok, Pao Siangliulue, Daniel S. Weld*, Tom Hope*
preprint, 2024
The scientific ideation process often involves blending salient aspects of existing papers to create new ideas. To see if large language models (LLMs) can assist this process, we contribute Scideator, a novel mixed-initiative tool for scientific ideation. Starting from a user-provided set of papers, Scideator extracts key facets (purposes, mechanisms, and evaluations) from these and relevant papers, allowing users to explore the idea space by interactively recombining facets to synthesize inventive ideas. Scideator also helps users to gauge idea novelty by searching the literature for potential overlaps and showing automated novelty assessments and explanations. To support these tasks, Scideator introduces four LLM-powered retrieval-augmented generation (RAG) modules: Analogous Paper Facet Finder, Faceted Idea Generator, Idea Novelty Checker, and Idea Novelty Iterator. In a within-subjects user study, 19 computer-science researchers identified significantly more interesting ideas using Scideator compared to a strong baseline combining a scientific search engine with LLM interaction.
A Search Engine for Discovery of Scientific Challenges and Directions
Dan Lahav, Jon Saad Falcon, Bailey Kuehl, Sophie Johnson, Sravanthi Parasa, Noam Shomron, Duen Horng Chau, Diyi Yang, Eric Horvitz, Daniel S Weld, Tom Hope
AAAI 2022
Keeping track of scientific challenges, advances and emerging directions is a fundamental part of research. However, researchers face a flood of papers that hinders discovery of important knowledge. In biomedicine, this directly impacts human lives. To address this problem, we present a novel task of extraction and search of scientific challenges and directions, to facilitate rapid knowledge discovery. We construct and release an expert-annotated corpus of texts sampled from full-length papers, labeled with novel semantic categories that generalize across many types of challenges and directions. We focus on a large corpus of interdisciplinary work relating to the COVID-19 pandemic, ranging from biomedicine to areas such as AI and economics. We apply a model trained on our data to identify challenges and directions across the corpus and build a dedicated search engine. In experiments with 19 researchers and clinicians using our system, we outperform a popular scientific search engine in assisting knowledge discovery. Finally, we show that models trained on our resource generalize to the wider biomedical domain and to AI papers, highlighting its broad utility. We make our data, model and search engine publicly available.
Paper Search engine Github Hugging Face
Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity
Sheshera Mysore, Arman Cohan, Tom Hope
NAACL 2022
We present Aspire, a new scientific document similarity model based on matching fine-grained aspects. Our model is trained using co-citation contexts that describe related paper aspects as a novel form of textual supervision. We use multi-vector document representations, recently explored in settings with short query texts but under-explored in the challenging document-document setting. We present a fast method that involves matching only single sentence pairs, and a method that makes sparse multiple matches with optimal transport. Our model improves performance on document similarity tasks across four datasets. Moreover, our fast single-match method achieves competitive results, opening up the possibility of applying fine-grained document similarity models to large-scale scientific corpora.
SciSight: Combining Faceted Navigation and Research Group Detection for COVID-19 Exploratory Scientific Search
Tom Hope, Jason Portenoy, Kishore Vasan, Jonathan Borchardt, Eric Horvitz, Daniel S Weld, Marti A Hearst, Jevin West
EMNLP 2020
The COVID-19 pandemic has sparked unprecedented mobilization of scientists, generating a deluge of papers that makes it hard for researchers to keep track and explore new directions. Search engines are designed for targeted queries, not for discovery of connections across a corpus. In this paper, we present SciSight, a system for exploratory search of COVID-19 research integrating two key capabilities: first, exploring associations between biomedical facets automatically extracted from papers (e.g., genes, drugs, diseases, patient outcomes); second, combining textual and network information to search and visualize groups of researchers and their ties.
Extracting a Knowledge Base of Mechanisms from COVID-19 Papers
Tom Hope *, Aida Amini*, David Wadden, Madeleine van Zuylen, Sravanthi Parasa, Eric Horvitz, Daniel Weld, Roy Schwartz, Hannaneh Hajishirzi
NAACL 2021
The COVID-19 pandemic has spawned a diverse body of scientific literature that is challenging to navigate, stimulating interest in automated tools to help find useful knowledge. We pursue the construction of a knowledge base (KB) of mechanisms – a fundamental concept across the sciences encompassing activities, functions and causal relations, ranging from cellular processes to economic impacts. We extract this information from the natural language of scientific papers by developing a broad, unified schema that strikes a balance between relevance and breadth. We annotate a dataset of mechanisms with our schema and train a model to extract mechanism relations from papers. Our experiments demonstrate the utility of our KB in supporting interdisciplinary scientific search over COVID-19 literature, outperforming the prominent PubMed search in a study with clinical experts.